3.622 \(\int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=211 \[ \frac{(49 A-9 B+C) \sin (c+d x) \sqrt{\sec (c+d x)}}{16 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{(75 A-19 B-5 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(13 A-5 B-3 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(A-B+C) \sin (c+d x) \sqrt{\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

-((75*A - 19*B - 5*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(
16*Sqrt[2]*a^(5/2)*d) - ((A - B + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((13*
A - 5*B - 3*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((49*A - 9*B + C)*Sqrt[S
ec[c + d*x]]*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.5896, antiderivative size = 211, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 45, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {4084, 4020, 4013, 3808, 206} \[ \frac{(49 A-9 B+C) \sin (c+d x) \sqrt{\sec (c+d x)}}{16 a^2 d \sqrt{a \sec (c+d x)+a}}-\frac{(75 A-19 B-5 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(13 A-5 B-3 C) \sin (c+d x) \sqrt{\sec (c+d x)}}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac{(A-B+C) \sin (c+d x) \sqrt{\sec (c+d x)}}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

-((75*A - 19*B - 5*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(
16*Sqrt[2]*a^(5/2)*d) - ((A - B + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - ((13*
A - 5*B - 3*C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(16*a*d*(a + a*Sec[c + d*x])^(3/2)) + ((49*A - 9*B + C)*Sqrt[S
ec[c + d*x]]*Sin[c + d*x])/(16*a^2*d*Sqrt[a + a*Sec[c + d*x]])

Rule 4084

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[((a*A - b*B + a*C)*Cot[e + f*x]*(a + b*Cs
c[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4020

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A*(2
*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*
b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sqrt{\sec (c+d x)} (a+a \sec (c+d x))^{5/2}} \, dx &=-\frac{(A-B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac{\int \frac{\frac{1}{2} a (9 A-B+C)-2 a (A-B-C) \sec (c+d x)}{\sqrt{\sec (c+d x)} (a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac{(A-B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(13 A-5 B-3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{\frac{1}{4} a^2 (49 A-9 B+C)-\frac{1}{2} a^2 (13 A-5 B-3 C) \sec (c+d x)}{\sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx}{8 a^4}\\ &=-\frac{(A-B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(13 A-5 B-3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(49 A-9 B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}-\frac{(75 A-19 B-5 C) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac{(A-B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(13 A-5 B-3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(49 A-9 B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}+\frac{(75 A-19 B-5 C) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=-\frac{(75 A-19 B-5 C) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{16 \sqrt{2} a^{5/2} d}-\frac{(A-B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac{(13 A-5 B-3 C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac{(49 A-9 B+C) \sqrt{\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.53791, size = 128, normalized size = 0.61 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec ^{\frac{3}{2}}(c+d x) \left (4 \sin \left (\frac{1}{2} (c+d x)\right ) ((85 A-13 B+5 C) \cos (c+d x)+16 A \cos (2 (c+d x))+65 A-9 B+C)-8 (75 A-19 B-5 C) \cos ^4\left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{64 a d (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(5/2)),x]

[Out]

(Sec[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(-8*(75*A - 19*B - 5*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]^4 + 4*
(65*A - 9*B + C + (85*A - 13*B + 5*C)*Cos[c + d*x] + 16*A*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(64*a*d*(a*(1 +
 Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.378, size = 594, normalized size = 2.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/32/d/a^3*(-1+cos(d*x+c))^2*(75*A*sin(d*x+c)*cos(d*x+c)^2*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-
2/(cos(d*x+c)+1))^(1/2)-19*B*sin(d*x+c)*cos(d*x+c)^2*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos
(d*x+c)+1))^(1/2)-5*C*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*co
s(d*x+c)^2+150*A*sin(d*x+c)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1
/2)-38*B*sin(d*x+c)*cos(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)-10*C
*sin(d*x+c)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)+75*arctan(1/
2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)*A*sin(d*x+c)-64*A*cos(d*x+c)^3-19*arctan(1/2
*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)*B*sin(d*x+c)-5*C*(-2/(cos(d*x+c)+1))^(1/2)*ar
ctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-106*A*cos(d*x+c)^2+26*B*cos(d*x+c)^2-10*C*cos(d*x+c)
^2+72*A*cos(d*x+c)-8*B*cos(d*x+c)+8*C*cos(d*x+c)+98*A-18*B+2*C)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)
^5/(1/cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.557281, size = 1476, normalized size = 7. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[-1/64*(sqrt(2)*((75*A - 19*B - 5*C)*cos(d*x + c)^3 + 3*(75*A - 19*B - 5*C)*cos(d*x + c)^2 + 3*(75*A - 19*B -
5*C)*cos(d*x + c) + 75*A - 19*B - 5*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c)
 + 1)) - 4*(32*A*cos(d*x + c)^3 + (85*A - 13*B + 5*C)*cos(d*x + c)^2 + (49*A - 9*B + C)*cos(d*x + c))*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^
2 + 3*a^3*d*cos(d*x + c) + a^3*d), 1/32*(sqrt(2)*((75*A - 19*B - 5*C)*cos(d*x + c)^3 + 3*(75*A - 19*B - 5*C)*c
os(d*x + c)^2 + 3*(75*A - 19*B - 5*C)*cos(d*x + c) + 75*A - 19*B - 5*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(32*A*cos(d*x + c)^3 + (85*A - 13*
B + 5*C)*cos(d*x + c)^2 + (49*A - 9*B + C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/
sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sqrt{\sec \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)